Cardiovascular Diabetology (Oct 2005)

Distinct effects of glucose and glucosamine on vascular endothelial and smooth muscle cells: Evidence for a protective role for glucosamine in atherosclerosis

  • Duan Wenlan,
  • Paka Latha,
  • Pillarisetti Sivaram

DOI
https://doi.org/10.1186/1475-2840-4-16
Journal volume & issue
Vol. 4, no. 1
p. 16

Abstract

Read online

Abstract Accelerated atherosclerosis is one of the major vascular complications of diabetes. Factors including hyperglycemia and hyperinsulinemia may contribute to accelerated vascular disease. Among the several mechanisms proposed to explain the link between hyperglycemia and vascular dysfunction is the hexosamine pathway, where glucose is converted to glucosamine. Although some animal experiments suggest that glucosamine may mediate insulin resistance, it is not clear whether glucosamine is the mediator of vascular complications associated with hyperglycemia. Several processes may contribute to diabetic atherosclerosis including decreased vascular heparin sulfate proteoglycans (HSPG), increased endothelial permeability and increased smooth muscle cell (SMC) proliferation. In this study, we determined the effects of glucose and glucosamine on endothelial cells and SMCs in vitro and on atherosclerosis in apoE null mice. Incubation of endothelial cells with glucosamine, but not glucose, significantly increased matrix HSPG (perlecan) containing heparin-like sequences. Increased HSPG in endothelial cells was associated with decreased protein transport across endothelial cell monolayers and decreased monocyte binding to subendothelial matrix. Glucose increased SMC proliferation, whereas glucosamine significantly inhibited SMC growth. The antiproliferative effect of glucosamine was mediated via induction of perlecan HSPG. We tested if glucosamine affects atherosclerosis development in apoE-null mice. Glucosamine significantly reduced the atherosclerotic lesion in aortic root. (P