Buildings (Apr 2023)

In-Plane Failure Mechanism and Strength Design of Plate-Tube-Connected Circular Steel Arches

  • Xigui Yuan,
  • Bo Yuan,
  • Minjie Shi

DOI
https://doi.org/10.3390/buildings13040956
Journal volume & issue
Vol. 13, no. 4
p. 956

Abstract

Read online

The in-plane elastoplastic failure mechanism of plate-tube-connected steel circular arches with inverted triangular cross sections is investigated in this study by using theoretical derivation and numerical simulation. First, the in-plane elastic buckling load formula of the arch under full-span uniform radial load (FSURL) is presented. Then, the limited conditions of avoiding the connecting plate and chord local failure before global elastic instability are derived. Lastly, the elastic–plastic failure mechanisms of arches are studied under FSURL, full-span uniform vertical load (FSUVL), and half-span uniform vertical load (HSUVL). It is found that the arch will experience global failure, chord local failure, combined connecting plate and chord failure, and connecting plate local failure under FSUVL and HSUVL. The failure mode is mainly related to the stiffness of the connecting plate. The corresponding design formulas are proposed for the global failure of arches and local failure of the chord. The proposed formulas and FE results are in good agreement.

Keywords