Animal (Jun 2023)

Effects of extended transition milk feeding on blood metabolites of female Holstein dairy calves at 3 weeks of age: a liquid chromatography with tandem mass spectrometry-based metabolomics approach

  • M. Bahadori-Moghaddam,
  • S. Kargar,
  • M. Kanani,
  • M.J. Zamiri,
  • A. Arefi-Oskouie,
  • M. Albenzio,
  • M. Caroprese,
  • M.G. Ciliberti,
  • M.H. Ghaffari

Journal volume & issue
Vol. 17, no. 6
p. 100844

Abstract

Read online

Transition milk (TRM) is a rich source of bioactive components that promotes intestinal development and growth, and reduces the susceptibility to diarrhoea in calves. The objective of this study was to characterise the effects of replacing pasteurised waste milk (none-saleable milk containing antibiotic and/or drug residues) with pasteurised TRM for 3 wk on blood metabolites of dairy calves at 21 d of age. A total of 84 healthy newborn female Holstein calves was blocked by birth order and assigned randomly to four treatment groups with partial replacement of pasteurised waste milk by TRM (second milking after parturition) at 0 (0 L/day TRM + 6 L/day milk), 0.5 (0.5 L/day TRM + 5.5 L/day milk), 1 (1 L/day TRM + 5 L/day milk), or 2 L (2 L/day TRM + 4 L/day milk) for a 21-day period. Serum metabolome was determined by liquid chromatography with tandem mass spectrometry-based metabolomics analysis on a subset of 26 randomly selected individuals from calves fed pasteurised waste milk (CON, 6 L/d milk; n = 13) or TRM (2 L/d TRM + 4 L/d milk; n = 13) at 21 d of age. The identified metabolites (194 out of 265) were categorised according to chemical class and the number of metabolites per class in the serum, amongst which glycerophospholipids 16% (n = 43), fatty acyls 7% (n = 19), organic acids 7% (n = 18), organic heterocyclic compounds 5% (n = 13), benzenoids 5% (n = 12), sphingolipids 5% (n = 12), organic oxygen compounds 4% (n = 11), and nucleic acids 3% (n = 9), were the predominant types. Significant differences in metabolites were determined by the volcano plot. Applying the volcano plot, only two metabolites (ceramide and phosphatidylserine) were significantly different between CON and TRM. Overall, our results suggested that prolonged TRM feeding for 3 wk had little effect on the serum metabolome of the dairy calves. We speculate that the potential effects of feeding TRM for 3 wk compared with waste milk were spatially limited to affect the composition of the local gut microbial community and the growth or function of the intestinal epithelium, not allowing detection of the likely effects in the serum through a metabolomic approach.

Keywords