Quantum correlations of higher-dimensional systems are an important content of quantum information theory and quantum information application. The quantification of quantum correlation of high-dimensional quantum systems is crucial, but difficult. In this paper, using the second-order nonlinear optical effect and multiphoton interference enhancement effect, we experimentally implement the photonic qutrit states and demonstrate the spin-1 information entropic inequality for the first time to quantitative quantum correlation. Our work shows that information entropy is an important way to quantify quantum correlation and quantum information processing.