Remote Sensing (Jun 2024)
Estimating Global Wheat Yields at 4 km Resolution during 1982–2020 by a Spatiotemporal Transferable Method
Abstract
Reliable and spatially explicit information on global crop yield has paramount implications for food security and agricultural sustainability. However, most previous yield estimates are either coarse-resolution in both space and time or are based on limited studied areas. Here, we developed a transferable approach to estimate 4 km global wheat yields and provide the related product from 1982 to 2020 (GlobalWheatYield4km). A spectra–phenology integration method was firstly proposed to identify spatial distributions of spring and winter wheat, followed by choosing the optimal yield prediction model at 4 km grid scale, with openly accessible data, including subnational-level census data covering ~11,000 political units. Finally, the optimal models were transferred at both spatial and temporal scales to obtain a consistent yield dataset product. The results showed that GlobalWheatYield4km captured 82% of yield variations with an RMSE of 619.8 kg/ha, indicating good temporal consistency (r and nRMSE ranging from 0.4 to 0.8 and 13.7% to 37.9%) with the observed yields across all subnational regions covering 40 years. In addition, our dataset generally had a higher accuracy (R2 = 0.71) as compared with the Spatial Production Allocation Model (SPAM) (R2 = 0.49). The method proposed for the global yield estimate would be applicable to other crops and other areas during other years, and our GlobalWheatYield4km dataset will play important roles in agro-ecosystem modeling and climate impact and adaptation assessment over larger spatial extents.
Keywords