PLoS ONE (Jan 2019)

Refinement of metabolite detection in cystic fibrosis sputum reveals heme correlates with lung function decline.

  • Nathaniel R Glasser,
  • Ryan C Hunter,
  • Theodore G Liou,
  • Dianne K Newman,
  • Mountain West CF Consortium Investigators

DOI
https://doi.org/10.1371/journal.pone.0226578
Journal volume & issue
Vol. 14, no. 12
p. e0226578

Abstract

Read online

The bacterial growth environment within cystic fibrosis (CF) sputum is complex, dynamic, and shaped by both host and microbial processes. Characterization of the chemical parameters within sputum that stimulate the in vivo growth of airway pathogens (e.g. Pseudomonas aeruginosa) and their associated virulence factors may lead to improved CF treatment strategies. Motivated by conflicting reports of the prevalence and abundance of P. aeruginosa-derived metabolites known as phenazines within CF airway secretions, we sought to quantify these metabolites in sputum using quadrupole time-of-flight mass spectrometry. In contrast to our previous work, all phenazines tested (pyocyanin (PYO), phenazine-1-carboxylic acid (PCA), phenazine-1-carboxamide, and 1-hydroxyphenazine) were below detection limits of the instrument (0.1 μM). Instead, we identified a late-eluting compound that shared retention time and absorbance characteristics with PCA, yet generated mass spectra and a fragmentation pattern consistent with ferriprotoporphyrin IX, otherwise known as heme B. These data suggested that UV-vis chromatographic peaks previously attributed to PCA and PYO in sputum were mis-assigned. Indeed, retrospective analysis of raw data from our prior study found that the heme B peak closely matched the peaks assigned to PCA, indicating that the previous study likely uncovered a positive correlation between pulmonary function (percent predicted forced expiratory volume in 1 second, or ppFEV1) and heme B, not PCA or any other phenazine. To independently test this observation, we performed a new tandem mass-spectrometry analysis of 71 additional samples provided by the Mountain West CF Consortium Sputum Biomarker study and revealed a positive correlation (ρ = -0.47, p<0.001) between sputum heme concentrations and ppFEV1. Given that hemoptysis is strongly associated with airway inflammation, pulmonary exacerbations and impaired lung function, these new data suggest that heme B may be a useful biomarker of CF pathophysiology.