Aptamer-Adjusted Carbon Dot Catalysis-Silver Nanosol SERS Spectrometry for Bisphenol A Detection
Yuqi Xie,
Lu Ma,
Shaoming Ling,
Huixiang Ouyang,
Aihui Liang,
Zhiliang Jiang
Affiliations
Yuqi Xie
Key Laboratory of Regional Ecological Environment Analysis and Pollution Control in Western Guangxi (Baise University), Education Department of Guangxi Zhuang Autonomous Region, College of Chemistry and Environment Engineering, Baise University, Baise 533000, China
Lu Ma
Key Laboratory of Regional Ecological Environment Analysis and Pollution Control in Western Guangxi (Baise University), Education Department of Guangxi Zhuang Autonomous Region, College of Chemistry and Environment Engineering, Baise University, Baise 533000, China
Shaoming Ling
Key Laboratory of Regional Ecological Environment Analysis and Pollution Control in Western Guangxi (Baise University), Education Department of Guangxi Zhuang Autonomous Region, College of Chemistry and Environment Engineering, Baise University, Baise 533000, China
Huixiang Ouyang
Key Laboratory of Regional Ecological Environment Analysis and Pollution Control in Western Guangxi (Baise University), Education Department of Guangxi Zhuang Autonomous Region, College of Chemistry and Environment Engineering, Baise University, Baise 533000, China
Aihui Liang
Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004, China
Zhiliang Jiang
Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004, China
Carbon dots (CDs) can be prepared from various organic (abundant) compounds that are rich in surfaces with –OH, –COOH, and –NH2 groups. Therefore, CDs exhibit good biocompatibility and electron transfer ability, allowing flexible surface modification and accelerated electron transfer during catalysis. Herein, CDs were prepared using a hydrothermal method with fructose, saccharose, and citric acid as C sources and urea as an N dopant. The as-prepared CDs were used to catalyze AgNO3–trisodium citrate (TSC) to produce Ag nanoparticles (AgNPs). The surface-enhanced Raman scattering (SERS) intensity increased with the increasing CDs concentration with Victoria blue B (VBB) as a signal molecule. The CDs exhibited a strong catalytic activity, with the highest activity shown by fructose-based CDs. After N doping, catalytic performance improved; with the passivation of a wrapped aptamer, the electron transfer was effectively disrupted (retarded). This resulted in the inhibition of the reaction and a decrease in the SERS intensity. When bisphenol A (BPA) was added, it specifically bound to the aptamer and CDs were released, recovering catalytical activity. The SERS intensity increased with BPA over the concentration range of 0.33–66.67 nmol/L. Thus, the aptamer-adjusted nanocatalytic SERS method can be applied for BPA detection.