eLife (Oct 2016)

HID-1 is required for homotypic fusion of immature secretory granules during maturation

  • Wen Du,
  • Maoge Zhou,
  • Wei Zhao,
  • Dongwan Cheng,
  • Lifen Wang,
  • Jingze Lu,
  • Eli Song,
  • Wei Feng,
  • Yanhong Xue,
  • Pingyong Xu,
  • Tao Xu

DOI
https://doi.org/10.7554/eLife.18134
Journal volume & issue
Vol. 5

Abstract

Read online

Secretory granules, also known as dense core vesicles, are generated at the trans-Golgi network and undergo several maturation steps, including homotypic fusion of immature secretory granules (ISGs) and processing of prehormones to yield active peptides. The molecular mechanisms governing secretory granule maturation are largely unknown. Here, we investigate a highly conserved protein named HID-1 in a mouse model. A conditional knockout of HID-1 in pancreatic β cells leads to glucose intolerance and a remarkable increase in the serum proinsulin/insulin ratio caused by defective proinsulin processing. Large volume three-dimensional electron microscopy and immunofluorescence imaging reveal that ISGs are much more abundant in the absence of HID-1. We further demonstrate that HID-1 deficiency prevented secretory granule maturation by blocking homotypic fusion of immature secretory granules. Our data identify a novel player during the early maturation of immature secretory granules.

Keywords