Antioxidants (Jun 2022)

Bioenergetic and Autophagic Characterization of Skin Fibroblasts from <i>C9orf72</i> Patients

  • Maria Isabel Alvarez-Mora,
  • Gloria Garrabou,
  • Tamara Barcos,
  • Francisco Garcia-Garcia,
  • Ruben Grillo-Risco,
  • Emma Peruga,
  • Laura Gort,
  • Sergi Borrego-Écija,
  • Raquel Sanchez-Valle,
  • Judith Canto-Santos,
  • Paula Navarro-Navarro,
  • Laia Rodriguez-Revenga

DOI
https://doi.org/10.3390/antiox11061129
Journal volume & issue
Vol. 11, no. 6
p. 1129

Abstract

Read online

The objective of this study is to describe the alterations occurring during the neurodegenerative process in skin fibroblast cultures from C9orf72 patients. We characterized the oxidative stress, autophagy flux, small ubiquitin-related protein SUMO2/3 levels as well as the mitochondrial function in skin fibroblast cultures from C9orf72 patients. All metabolic and bioenergetic findings were further correlated with gene expression data obtained from RNA sequencing analysis. Fibroblasts from C9orf72 patients showed a 30% reduced expression of C9orf72, ~3-fold increased levels of oxidative stress and impaired mitochondrial function obtained by measuring the enzymatic activities of mitochondrial respiratory chain complexes, specifically of complex III activity. Furthermore, the results also reveal that C9orf72 patients showed an accumulation of p62 protein levels, suggesting the alteration of the autophagy process, and significantly higher protein levels of SUMO2/3 (p = 0.03). Our results provide new data reinforcing that C9orf72 cells suffer from elevated oxidative damage to biomolecules and organelles and from increased protein loads, leading to insufficient autophagy and an increase in SUMOylation processes.

Keywords