Sensors (Jun 2022)

Enhanced Single Shot Small Object Detector for Aerial Imagery Using Super-Resolution, Feature Fusion and Deconvolution

  • Mahdi Maktab Dar Oghaz,
  • Manzoor Razaak,
  • Paolo Remagnino

DOI
https://doi.org/10.3390/s22124339
Journal volume & issue
Vol. 22, no. 12
p. 4339

Abstract

Read online

One common issue of object detection in aerial imagery is the small size of objects in proportion to the overall image size. This is mainly caused by high camera altitude and wide-angle lenses that are commonly used in drones aimed to maximize the coverage. State-of-the-art general purpose object detector tend to under-perform and struggle with small object detection due to loss of spatial features and weak feature representation of the small objects and sheer imbalance between objects and the background. This paper aims to address small object detection in aerial imagery by offering a Convolutional Neural Network (CNN) model that utilizes the Single Shot multi-box Detector (SSD) as the baseline network and extends its small object detection performance with feature enhancement modules including super-resolution, deconvolution and feature fusion. These modules are collectively aimed at improving the feature representation of small objects at the prediction layer. The performance of the proposed model is evaluated using three datasets including two aerial images datasets that mainly consist of small objects. The proposed model is compared with the state-of-the-art small object detectors. Experiment results demonstrate improvements in the mean Absolute Precision (mAP) and Recall values in comparison to the state-of-the-art small object detectors that investigated in this study.

Keywords