Heliyon (Oct 2022)

Laboratory detection of SARS-CoV-2: A review of the current literature and future perspectives

  • Kang-Sheng Liu,
  • Xiao-Dong Mao,
  • Wenjing Ni,
  • Tai-Ping Li

Journal volume & issue
Vol. 8, no. 10
p. e10858

Abstract

Read online

Nowadays, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), whose infectivity is awfully strong, has been a major global threat to the public health. Since lung is the major target of SARS-CoV-2, the infection can lead to respiratory distress syndrome (RDS), multiple organ failure (MOF), and even death. The studies on viral structure and infection mechanism have found that angiotensin-converting enzyme 2 (ACE2), a pivotal enzyme affecting the organ-targeting in the RAS system, is the receptor of the SARS-CoV-2 virus. Currently, the detection of SARSCoV-2 is mainly achieved using open plate real-time reverse-transcription polymerase chain reaction (RT-PCR). While open plate method has some limitations, such as a high false-negative rate, cumbersome manual operation, aerosol pollution and leakage risks. Therefore, a convenient method to rapidly detect SARS-CoV-2 virus is urgently and extremely required for timely epidemic control with the limited resources. In this review, the current real-time methods and principles for novel coronavirus detection are summarized, with the aim to provide a reference for real-time screening of coronavirus in areas with insufficient detection capacity and inadequate medical resources. The development and establishment of a rapid, simple, sensitive and specific system to detect SARS-CoV-2 is of vital importance for distinct diagnosis and effective treatment of the virus, especially in the flu season.

Keywords