Energies (Apr 2022)

Use of Recurrent Neural Network with Long Short-Term Memory for Seepage Prediction at Tarbela Dam, KP, Pakistan

  • Muhammad Ishfaque,
  • Qianwei Dai,
  • Nuhman ul Haq,
  • Khanzaib Jadoon,
  • Syed Muzyan Shahzad,
  • Hammad Tariq Janjuhah

DOI
https://doi.org/10.3390/en15093123
Journal volume & issue
Vol. 15, no. 9
p. 3123

Abstract

Read online

Estimating the quantity of seepage through the foundation and body of a dam using proper health and safety monitoring is critical to the effective management of disaster risk in a reservoir downstream of the dam. In this study, a deep learning model was constructed to predict the extent of seepage through Pakistan’s Tarbela dam, the world’s second largest clay and rock dam. The dataset included hydro-climatological, geophysical, and engineering characteristics for peak-to-peak water inflows into the dam from 2014 to 2020. In addition, the data are time series, recurring neural networks (RNN), and long short-term memory (LSTM) as time series algorithms. The RNN–LSTM model has an average mean square error of 0.12, and a model performance of 0.9451, with minimal losses and high accuracy, resulting in the best-predicted dam seepage result. Damage was projected using a deep learning system that addressed the limitations of the model, the difficulties of calculating human activity schedules, and the need for a different set of input data to make good predictions.

Keywords