IEEE Access (Jan 2020)

Neural-Based Command Filtered Backstepping Control for Trajectory Tracking of Underactuated Autonomous Surface Vehicles

  • Chengju Zhang,
  • Cong Wang,
  • Yingjie Wei,
  • Jinqiang Wang

DOI
https://doi.org/10.1109/ACCESS.2020.2975898
Journal volume & issue
Vol. 8
pp. 42481 – 42490

Abstract

Read online

This paper is concerned with the problem of trajectory tracking control of underactuated autonomous surface vehicles subject to parameter uncertainties and nonlinear external disturbances. A robust control scheme is presented by employing backstepping method, neural network and sliding mode control. In addition, the overall signals are guaranteed the uniformly ultimate boundness by the Lyapunov stability theory. These advantages are highlighted as follows: (i) The derivations of virtual variables are obtained by a second-order filter. A compensation loop is proposed to reduce the filtered errors between the filtered variables and virtual variables. (ii) The neural network is combined with low-frequency learning techniques to estimate and approximate unknown functions of system.(iii) An anti-windup design is employed to restrict the amplitude of control inputs. Finally, simulation results show the strong robustness and tracking effectiveness of the designed control scheme under the nonlinear external disturbances.

Keywords