Journal of Medical Internet Research (Jun 2023)

Meeting the Behavioral Health Needs of Health Care Workers During COVID-19 by Leveraging Chatbot Technology: Development and Usability Study

  • Maga Jackson-Triche,
  • Don Vetal,
  • Eva-Marie Turner,
  • Priya Dahiya,
  • Christina Mangurian

DOI
https://doi.org/10.2196/40635
Journal volume & issue
Vol. 25
p. e40635

Abstract

Read online

BackgroundDuring the COVID-19 pandemic, health care systems were faced with the urgent need to implement strategies to address the behavioral health needs of health care workers. A primary concern of any large health care system is developing an easy-to-access, streamlined system of triage and support despite limited behavioral health resources. ObjectiveThis study provides a detailed description of the design and implementation of a chatbot program designed to triage and facilitate access to behavioral health assessment and treatment for the workforce of a large academic medical center. The University of California, San Francisco (UCSF) Faculty, Staff, and Trainee Coping and Resiliency Program (UCSF Cope) aimed to provide timely access to a live telehealth navigator for triage and live telehealth assessment and treatment, curated web-based self-management tools, and nontreatment support groups for those experiencing stress related to their unique roles. MethodsIn a public-private partnership, the UCSF Cope team built a chatbot to triage employees based on behavioral health needs. The chatbot is an algorithm-based, automated, and interactive artificial intelligence conversational tool that uses natural language understanding to engage users by presenting a series of questions with simple multiple-choice answers. The goal of each chatbot session was to guide users to services that were appropriate for their needs. Designers developed a chatbot data dashboard to identify and follow trends directly through the chatbot. Regarding other program elements, website user data were collected monthly and participant satisfaction was gathered for each nontreatment support group. ResultsThe UCSF Cope chatbot was rapidly developed and launched on April 20, 2020. As of May 31, 2022, a total of 10.88% (3785/34,790) of employees accessed the technology. Among those reporting any form of psychological distress, 39.7% (708/1783) of employees requested in-person services, including those who had an existing provider. UCSF employees responded positively to all program elements. As of May 31, 2022, the UCSF Cope website had 615,334 unique users, with 66,585 unique views of webinars and 601,471 unique views of video shorts. All units across UCSF were reached by UCSF Cope staff for special interventions, with >40 units requesting these services. Town halls were particularly well received, with >80% of attendees reporting the experience as helpful. ConclusionsUCSF Cope used chatbot technology to incorporate individualized behavioral health triage, assessment, treatment, and general emotional support for an entire employee base (N=34,790). This level of triage for a population of this size would not have been possible without the use of chatbot technology. The UCSF Cope model has the potential to be scaled, adapted, and implemented across both academically and nonacademically affiliated medical settings.