Nutrients (Mar 2021)

<i>Plasmodium chabaudi</i> Infection Alters Intestinal Morphology and Mucosal Innate Immunity in Moderately Malnourished Mice

  • Noah Joseph Murr,
  • Tyler B. Olender,
  • Margaret R. Smith,
  • Amari S. Smith,
  • Jennifer Pilotos,
  • Lyndsay B. Richard,
  • Chishimba Nathan Mowa,
  • Michael Makokha Opata

DOI
https://doi.org/10.3390/nu13030913
Journal volume & issue
Vol. 13, no. 3
p. 913

Abstract

Read online

Plasmodium falciparum is a protozoan parasite which causes malarial disease in humans. Infections commonly occur in sub-Saharan Africa, a region with high rates of inadequate nutrient consumption resulting in malnutrition. The complex relationship between malaria and malnutrition and their effects on gut immunity and physiology are poorly understood. Here, we investigated the effect of malaria infection in the guts of moderately malnourished mice. We utilized a well-established low protein diet that is deficient in zinc and iron to induce moderate malnutrition and investigated mucosal tissue phenotype, permeability, and innate immune response in the gut. We observed that the infected moderately malnourished mice had lower parasite burden at the peak of infection, but damaged mucosal epithelial cells and high levels of FITC-Dextran concentration in the blood serum, indicating increased intestinal permeability. The small intestine in the moderately malnourished mice were also shorter after infection with malaria. This was accompanied with lower numbers of CD11b+ macrophages, CD11b+CD11c+ myeloid cells, and CD11c+ dendritic cells in large intestine. Despite the lower number of innate immune cells, macrophages in the moderately malnourished mice were highly activated as determined by MHCII expression and increased IFNγ production in the small intestine. Thus, our data suggest that malaria infection may exacerbate some of the abnormalities in the gut induced by moderate malnutrition.

Keywords