BMC Bioinformatics (Mar 2021)

ContigExtender: a new approach to improving de novo sequence assembly for viral metagenomics data

  • Zachary Deng,
  • Eric Delwart

DOI
https://doi.org/10.1186/s12859-021-04038-2
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 19

Abstract

Read online

Abstract Background Metagenomics is the study of microbial genomes for pathogen detection and discovery in human clinical, animal, and environmental samples via Next-Generation Sequencing (NGS). Metagenome de novo sequence assembly is a crucial analytical step in which longer contigs, ideally whole chromosomes/genomes, are formed from shorter NGS reads. However, the contigs generated from the de novo assembly are often very fragmented and rarely longer than a few kilo base pairs (kb). Therefore, a time-consuming extension process is routinely performed on the de novo assembled contigs. Results To facilitate this process, we propose a new tool for metagenome contig extension after de novo assembly. ContigExtender employs a novel recursive extending strategy that explores multiple extending paths to achieve highly accurate longer contigs. We demonstrate that ContigExtender outperforms existing tools in synthetic, animal, and human metagenomics datasets. Conclusions A novel software tool ContigExtender has been developed to assist and enhance the performance of metagenome de novo assembly. ContigExtender effectively extends contigs from a variety of sources and can be incorporated in most viral metagenomics analysis pipelines for a wide variety of applications, including pathogen detection and viral discovery.

Keywords