BMC Cancer (Jan 2023)
Enhancement of radiation therapy by indoleamine 2,3 dioxygenase 1 inhibition through multimodal mechanisms
Abstract
Abstract Background Indoleamine 2,3-dioxygenase 1 (IDO1) is an enzyme that converts tryptophan to kynurenine. IDO1 expression is found not only in tumor cells but also in immune cells and is associated with tumor proliferation and immune responses. IDO1 inhibitors and radiation may cooperatively suppress tumor proliferation through the alterations in the Wnt/β-catenin pathway, cell cycle, and immune response. We investigated the antitumor effects of combination therapy of an IDO1 inhibitor, 1-methyl tryptophan (1-MT), and radiation on colorectal cancer. Methods In vitro experiments were conducted using human and murine colon cancer cell lines (HCT116, HT-29, and Colon26). Cell growth inhibition was assessed using a MTS assay and Clonogenic assay. Cells were cultured for 48 h with or without 500 µM 1-MT after exposure to radiation (4 Gy). Cell cycle effects and modulation of Wnt/β-catenin pathway were evaluated using western blot analysis, flow cytometry, RT-PCR. Subcutaneous Colon26 tumors in BALB/c mice were treated by oral 1-MT (6 mg/mL) for 2 weeks and/or local radiation (10 Gy/10 fr). Bromodeoxyuridine (BrdU) incorporation in tumor cells and expression of differentiation markers of immune cells were evaluated using immunohistochemistry. Results 1-MT and a small interfering RNA against IDO1 suppressed proliferation of all cell lines, which was rescued by kynurenine. Clonogenic assay showed that administration of 1-MT improved radiosensitivity by suppressing the Wnt/β-catenin pathway activated by radiation and enhancing cell cycle arrest induced by radiation. Combination therapy showed a further reduction in tumor burden compared with monotherapies or untreated control, inducing the highest numbers of intratumoral CD3 + and CD8 + T cells and the lowest numbers of Foxp3 + and BrdU-positive tumor cells. Conclusions The combination of 1-MT and radiation suppressed colon cancer cells in vitro and in vivo via multiple mechanisms.
Keywords