Nature Communications (Nov 2024)

Plasmid-encoded phosphatase RapP enhances cell growth in non-domesticated Bacillus subtilis strains

  • Manlu Zhu,
  • Yiheng Wang,
  • Haoyan Mu,
  • Fei Han,
  • Qian Wang,
  • Yongfu Pei,
  • Xin Wang,
  • Xiongfeng Dai

DOI
https://doi.org/10.1038/s41467-024-53992-x
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 14

Abstract

Read online

Abstract The trade-off between rapid growth and other important physiological traits (e.g., survival and adaptability) poses a fundamental challenge for microbes to achieve fitness maximization. Studies on Bacillus subtilis biology often use strains derived after a process of lab ‘domestication’ from an ancestral strain known as Marburg strain. The domestication process led to loss of a large plasmid (pBS32) encoding a phosphatase (RapP) that dephosphorylates the Spo0F protein and thus regulates biofilm formation and sporulation. Here, we show that plasmid pBS32, and more specifically rapP, enhance growth rates by preventing premature expression of the Spo0F-Spo0A-mediated adaptive response during exponential phase. This results in reallocation of proteome resources towards biosynthetic, growth-promoting pathways without compromising long-term fitness during stationary phase. Thus, RapP helps B. subtilis to constrain physiological trade-offs and economize cellular resources for fitness improvement.