Algorithms (Oct 2021)
A Non-Dominated Genetic Algorithm Based on Decoding Rule of Heat Treatment Equipment Volume and Job Delivery Date
Abstract
This paper investigated the flexible job-shop scheduling problem with the heat treatment process. To solve this problem, we built an unified mathematical model of the heat treatment process and machining process. Up to now, this problem has not been investigated much. Based on the features of this problem, we are intended to minimize Cmax, maximize the space utilization rate of heat treatment equipment, and minimize the total delay penalty to optimize the scheduling. By taking the dynamic process arrival under consideration, this paper proposed a set of decoding rules based on the heat treatment equipment volume and job delivery date to achieve a hybrid dynamic scheduling solution during one scheduling procedure. When the utilization rate of heat treatment equipment volume is maximized, and the job delivery date is taken under consideration, it is preferred to minimize the number of workpiece batches in the same job, and reduce the waiting time of the pending job. In combination with the improved adaptive non-dominated genetic algorithm, we worked out the solution. Furthermore, we verified the effectiveness of the proposed decoding rules and improved algorithm through algorithm comparison and calculation results. Finally, a software system for algorithm verification and algorithm comparison was developed to verify the validity of our proposed algorithm.
Keywords