Abstract Background High-sensitivity cardiac troponin testing is a promising tool for cardiovascular risk prediction, but whether serial testing can dynamically predict risk is uncertain. We evaluated the trajectory of cardiac troponin I in the years prior to a cardiovascular event in the general population, and determine whether serial measurements could track risk within individuals. Methods In the Whitehall II cohort, high-sensitivity cardiac troponin I concentrations were measured on three occasions over a 15-year period. Time trajectories of troponin were constructed in those who died from cardiovascular disease compared to those who survived or died from other causes during follow up and these were externally validated in the HUNT Study. A joint model that adjusts for cardiovascular risk factors was used to estimate risk of cardiovascular death using serial troponin measurements. Results In 7,293 individuals (mean 58 ± 7 years, 29.4% women) cardiovascular and non-cardiovascular death occurred in 281 (3.9%) and 914 (12.5%) individuals (median follow-up 21.4 years), respectively. Troponin concentrations increased in those dying from cardiovascular disease with a steeper trajectory compared to those surviving or dying from other causes in Whitehall and HUNT (P interaction < 0.05 for both). The joint model demonstrated an independent association between temporal evolution of troponin and risk of cardiovascular death (HR per doubling, 1.45, 95% CI,1.33–1.75). Conclusions Cardiac troponin I concentrations increased in those dying from cardiovascular disease compared to those surviving or dying from other causes over the preceding decades. Serial cardiac troponin testing in the general population has potential to track future cardiovascular risk.