PLoS ONE (Jan 2022)

Evaluation of emerging inflammatory markers for predicting oxygen support requirement in COVID-19 patients.

  • Peerapong Kamjai,
  • Sivaporn Hemvimol,
  • Narisa Kengtrong Bordeerat,
  • Potjanee Srimanote,
  • Pornpimon Angkasekwinai

DOI
https://doi.org/10.1371/journal.pone.0278145
Journal volume & issue
Vol. 17, no. 11
p. e0278145

Abstract

Read online

Coronavirus disease 2019 (COVID-19), a highly contagious pathogenic viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly and remains a challenge to global public health. COVID-19 patients manifest various symptoms from mild to severe cases with poor clinical outcomes. Prognostic values of novel markers, including neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR) and C-reactive protein to lymphocyte ratio (CLR) calculated from routine laboratory parameters have recently been reported to predict severe cases; however, whether this investigation can guide oxygen therapy in COVID-19 patients remains unclear. In this study, we assessed the ability of these markers in screening and predicting types of oxygen therapy in COVID-19 patients. The retrospective data of 474 COVID-19 patients were categorized into mild and severe cases and grouped according to the types of oxygen therapy requirement, including noninvasive oxygen support, high-flow nasal cannula and invasive mechanical ventilator. Among the novel markers, the ROC curve analysis indicated a screening cutoff of CRP ≥ 30.0 mg/L, NLR ≥ 3.0 and CLR ≥ 25 in predicting the requirement of any type of oxygen support. The NLR and CLR with increasing cut-off values have discriminative power with high accuracy and specificity for more effective oxygen therapy with a high-flow nasal cannula (NLR ≥ 6.0 and CLR ≥ 60) and mechanical ventilator (NLR ≥ 8.0 and CLR ≥ 80). Our study thus identifies potential markers to differentiate the suitable management of oxygen therapy in COVID-19 patients at an earlier time for improving disease outcomes with limited respiratory support resources.