Institut de Chimie Organique et Analytique (ICOA), UMR CNRS-Université d'Orléans 7311, Université d'Orléans BP 6759, Orléans Cedex 2, 45067, France
Stéphane Bourg
Institut de Chimie Organique et Analytique (ICOA), UMR CNRS-Université d'Orléans 7311, Université d'Orléans BP 6759, Orléans Cedex 2, 45067, France
Pascal Bonnet
Institut de Chimie Organique et Analytique (ICOA), UMR CNRS-Université d'Orléans 7311, Université d'Orléans BP 6759, Orléans Cedex 2, 45067, France
Joseph Rebehmed
Department of Computer Science and Mathematics, Lebanese, American University, Beirut, Lebanon
Alexandre G. de Brevern
Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, Biologie Intégrée du Globule Rouge, UMR_S 1134, DSIMB Bioinformatics team, 75014 Paris, France
Julien Diharce
Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, Biologie Intégrée du Globule Rouge, UMR_S 1134, DSIMB Bioinformatics team, 75014 Paris, France; Corresponding author.
Computational approaches are nowadays largely applied in drug discovery projects. Among these, molecular docking is the most used for hit identification against a drug target protein. However, many scientists in the field shed light on the lack of availability and reproducibility of the data obtained from such studies to the whole community. Consequently, sustaining and developing the efforts toward a large and fully transparent sharing of those data could be beneficial for all researchers in drug discovery. The purpose of this article is first to propose guidelines and recommendations on the appropriate way to conduct virtual screening experiments and second to depict the current state of sharing molecular docking data. In conclusion, we have explored and proposed several prospects to enhance data sharing from docking experiment that could be developed in the foreseeable future.