Neoplasia: An International Journal for Oncology Research (Oct 2023)

Downregulation of MGMT expression by targeted editing of DNA methylation enhances temozolomide sensitivity in glioblastoma

  • Xinyu Han,
  • Mohammed O.E. Abdallah,
  • Peter Breuer,
  • Fabian Stahl,
  • Yousuf Bakhit,
  • Anna-Laura Potthoff,
  • Barbara E.F. Pregler,
  • Matthias Schneider,
  • Andreas Waha,
  • Ullrich Wüllner,
  • Bernd O. Evert

Journal volume & issue
Vol. 44
p. 100929

Abstract

Read online

Glioblastoma is the most common and aggressive primary tumor of the central nervous system with poor outcome. Current gold standard treatment is surgical resection followed by a combination of radio- and chemotherapy. Efficacy of temozolomide (TMZ), the primary chemotherapeutic agent, depends on the DNA methylation status of the O6-methylguanine DNA methyltransferase (MGMT), which has been identified as a prognostic biomarker in glioblastoma patients. Clinical studies revealed that glioblastoma patients with hypermethylated MGMT promoter have a better response to TMZ treatment and a significantly improved overall survival. In this study, we thus used the CRISPRoff genome editing tool to mediate targeted DNA methylation within the MGMT promoter region. The system carrying a CRISPR-deactivated Cas9 (dCas9) fused with a methyltransferase (Dnmt3A/3L) domain downregulated MGMT expression in TMZ-resistant human glioblastoma cell lines through targeted DNA methylation. The reduction of MGMT expression levels reversed TMZ resistance in TMZ-resistant glioblastoma cell lines resulting in TMZ induced dose-dependent cell death rates. In conclusion, we demonstrate targeted RNA-guided methylation of the MGMT promoter as a promising tool to overcome chemoresistance and improve the cytotoxic effect of TMZ in glioblastoma.

Keywords