AIP Advances (Sep 2024)

Kinetic Alfvén solitary waves in astrophysical plasmas

  • M. M. Hasan,
  • M. R. Hossen,
  • A. A. Mamun

DOI
https://doi.org/10.1063/5.0226568
Journal volume & issue
Vol. 14, no. 9
pp. 095217 – 095217-9

Abstract

Read online

The magnetospheric plasma (hot and thin) and the solar wind plasma (cold and dense) are separated by the Earth’s magnetopause, in which plasmas of both origins coexist. Different types of plasma diffusions are found due to this plasma mixing, and kinetic Alfvén solitary waves (KASWs) are one of them. In this work, a theoretical approach is taken to study the fundamental properties of heavy ion acoustic KASWs (HIAKASWs) in a magnetized plasma system whose constituents are nonextensive q-distributed two temperature electrons with dynamical heavy ions. The perturbations of the magnetized collisionless plasma system are investigated using the reductive perturbation technique to deduce the Korteweg–de Vries (K–DV) and modified K–DV (MK–DV) equations to determine the fundamental characteristics of small, but finite amplitude HIAKASWs. The presence of nonextensive electrons, magnetic field, obliquity angle (the angle between the external magnetic field and wave propagation), plasma particle number densities, and the temperature of various plasma species are observed to significantly alter the fundamental properties of HIAKASWs. The findings of our present study may be useful for comprehending the nonlinear wave properties in diverse interstellar plasma environments.