Scientific Reports (Dec 2022)

Negative Poisson’s ratio polyethylene matrix and 0.5Ba(Zr0.2 Ti0.8) O3–0.5(Ba0.7 Ca0.3)TiO3 based piezocomposite for sensing and energy harvesting applications

  • Saptarshi Karmakar,
  • Raj Kiran,
  • Chris Bowen,
  • Rahul Vaish,
  • Vishal Singh Chauhan,
  • Zainab Mufarreh Elqahtani,
  • Samia Ben Ahmed,
  • M. S. Al-Buriahi,
  • Anuruddh Kumar,
  • Tae Hyun Sung

DOI
https://doi.org/10.1038/s41598-022-26834-3
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 25

Abstract

Read online

Abstract Finite element studies were conducted on 0.5Ba(Zr0.2 Ti0.8) O3–0.5(Ba0.7 Ca0.3)TiO3 (BCZT) piezoelectric particles embedded in polyethylene matrix to create a piezocomposite having a positive and negative Poisson's ratio of −0.32 and 0.2. Polyethylene with a positive Poisson's ratio is referred to as non-auxetic while those with negative Poisson's ratio are referred to as auxetic or inherently auxetic. The effective elastic and piezoelectric properties were calculated at volume fractions of (4%, 8% to 24%) to study their sensing and harvesting performance. This study compared lead-free auxetic 0–3 piezocomposite for sensing and energy harvesting with non-auxetic one. Inherently auxetic piezocomposites have been studied for their elastic and piezoelectric properties and improved mechanical coupling, but their sensing and energy harvesting capabilities and behavior patterns have not been explored in previous literatures. The effect of Poisson's ratio ranging between −0.9 to 0.4 on the sensing and energy harvesting performance of an inherently auxetic lead free piezocomposite composite with BCZT inclusions has also not been studied before, motivating the author to conduct the present study. Auxetic piezocomposite demonstrated an overall improvement in performance in terms of higher sensing voltage and harvested power. The study was repeated at a constant volume fraction of 24% for a range of Poisson's ratio varied between −0.9 to 0.4. Enhanced performance was observed at the extreme negative end of the Poisson's ratio spectrum. This paper demonstrates the potential improvements by exploiting auxetic matrices in future piezocomposite sensors and energy harvesters.