Energies (Apr 2019)
An Online Coordinated Charging/Discharging Strategy of Plug-in Electric Vehicles in Unbalanced Active Distribution Networks with Ancillary Reactive Service in the Energy Market
Abstract
The global acceptance and off-grid charging of plug-in electric vehicles (PEVs) are expected to grow tremendously in the next few years. Uncoordinated PEV charging can cause serious grid issues such as overloading of transformers and unacceptable voltage drops. Single-phase residential charging can also initiate or contribute to voltage unbalance conditions in the distribution networks. A potential solution and key challenge for PEV integration is shifting of the charging activities to off-peak periods. This paper proposes a new PEV coordination approach based on genetic algorithm (GA) optimization to perform online centralized charging and discharging considering transformer loading and node voltage magnitude and unbalance profiles. It allows PEV as source of active and reactive power to participate in energy market based on different prices during a day, without any degradation. Finally, the impacts of uncoordinated and the proposed GA coordinated PEV charging/discharging strategy are simulated for a real unbalanced Western Australian distribution network in the Perth solar city over 24 h.
Keywords