Modern Electronic Materials (Sep 2019)

Corrosion and electrohemical behavior of aluminum conductor E-AlMgSi (Aldrey) alloy with tin in a medium electrolite NaCl

  • Izatullo N. Ganiev,
  • Aslam P. Abulakov,
  • Jamshed H. Jayloev,
  • Firdavs A. Aliev,
  • Akram R. Rashidov

DOI
https://doi.org/10.3897/j.moem.5.3.52691
Journal volume & issue
Vol. 5, no. 3
pp. 127 – 132

Abstract

Read online Read online Read online

The economic feasibility of using aluminum as a conductive material is explained by the favorable ratio of its cost to the cost of copper. In addition, one should take into account the factor that the cost of aluminum has remained virtually unchanged for many years. When using conductive aluminum alloys for the manufacture of thin wire, winding wire, etc. Certain difficulties may arise in connection with their insufficient strength and a small number of kinks before fracture. In recent years, aluminum alloys have been developed, which even in a soft state have strength characteristics that allow them to be used as a conductive material. One of the promising areas for the use of aluminum is the electrical industry. Conducting aluminum alloys type of the E-AlMgSi (Aldrey) are representatives of this group of alloys and belong to heat-strengthened alloys. They are distinct by high strength and good ductility. These alloys, with appropriate heat treatment, acquire high electrical conductivity. The producing made from it are used almost exclusively for overhead power lines. The paper presents the results of a study of the anodic behavior of aluminum E-AlMgSi (Aldrey) alloy with tin in a medium electrolyte of 0.03; 0.3 and 3.0% NaCl. Corrosion-electrochemical studies of the alloys were carried out by the potentiostatic method in potentiostat PI-50-1.1 at a potential sweep speed of 2 mV/s. It is shown that alloying E-AlMgSi (Aldrey) alloy with tin increases its corrosion resistance by 20%. The main electrochemical potentials of the E-AlMgSi (Aldrey) alloy, when doped with tin, shift to a positive range of values, and from the concentration of sodium chloride in the negative direction of the ordinate.