Clustering in ferronematics—The effect of magnetic collective ordering
Veronika Lacková,
Martin A. Schroer,
Dirk Honecker,
Martin Hähsler,
Hana Vargová,
Katarína Zakutanská,
Silke Behrens,
Jozef Kováč,
Dmitri I. Svergun,
Peter Kopčanský,
Natália Tomašovičová
Affiliations
Veronika Lacková
Institute of Experimental Physics, Slovak Academy of Sciences, Watsonová 47, 04001 Košice, Slovakia
Martin A. Schroer
European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestr. 85, 22607 Hamburg, Germany; Nanoparticle Process Technology University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany
Dirk Honecker
Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
Martin Hähsler
Institut für Katalyseforschung und -technologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe, Germany; Anorganisch-Chemisches Institut, Universität Heidelberg, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
Hana Vargová
Institute of Experimental Physics, Slovak Academy of Sciences, Watsonová 47, 04001 Košice, Slovakia
Katarína Zakutanská
Institute of Experimental Physics, Slovak Academy of Sciences, Watsonová 47, 04001 Košice, Slovakia
Silke Behrens
Institut für Katalyseforschung und -technologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe, Germany; Anorganisch-Chemisches Institut, Universität Heidelberg, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
Jozef Kováč
Institute of Experimental Physics, Slovak Academy of Sciences, Watsonová 47, 04001 Košice, Slovakia
Summary: Clustering of magnetic nanoparticles can dramatically change their collective magnetic properties, and it consequently may influence their performance in biomedical and technological applications. Owing to tailored surface modification of magnetic particles such composites represent stable systems. Here, we report ferronematic mixtures that contain anisotropic clusters of mesogen-hybridized cobalt ferrite nanoparticles dispersed in liquid crystal host studied by different experimental methods—magnetization measurements, small-angle X-ray scattering (SAXS), small-angle neutron scattering (SANS), and capacitance measurements. These measurements reveal non-monotonic dependencies of magnetization curves and the Fréedericksz transition on the magnetic nanoparticles concentration. This can be explained by the formation of clusters, whose structures were determined by SAXS measurements. Complementary to the magnetization measurements, SANS measurements of the samples were performed for different magnetic field strengths to obtain information on the orientation of the liquid crystal molecules. We demonstrated that such hybrid materials offer new avenues for tunable materials.