Journal of Electrical and Computer Engineering Innovations (Jan 2020)

A Novel Method Design Multiplexer Quaternary with CNTFET

  • S. Rahmati,
  • E. Farshidi,
  • J. Ganji

DOI
https://doi.org/10.22061/jecei.2020.7091.356
Journal volume & issue
Vol. 8, no. 1
pp. 9 – 18

Abstract

Read online

Background and Objectives: In recent decades, due to the effect of the short channel, the use of CMOS transistors in the nanoscale has become a major concern. One option to deal with this issue is the use of nano-transistors.Methods: Using nano-transistors and multi-valued logic (MVL) can reduce the level of chips and connections and have a direct impact on power consumption. The present study reports the design of a new method of Multiplexers (MUXs) based on quaternary logic and transistors of carbon nanotubes (CNTFET) and having a new look at the layout and use of MUXs.Results:The use of special rotary functions and unary operators in Quaternary logic in the design of MUXs reduced the number of CNTFETs from 27% to 54%. Also, the use of MUXs in the Adder structure resulted in a 54% reduction in Power Delay Product (PDP) and a 17.5% to 85.6% reduction in CNTFET counts.Conclusion: The simulated results display a significant improvement in the fabrication of Adders, average power consumption, speed, and PDP compared to the current best-performing techniques in the literature. The proposed operators and circuits were evaluated under various operating conditions. The results show the stability of the proposed circuits.

Keywords