Nanomaterials (Mar 2022)

Carbon Nanotubes Interconnected NiCo Layered Double Hydroxide Rhombic Dodecahedral Nanocages for Efficient Oxygen Evolution Reaction

  • Meng Li,
  • Yujie Huang,
  • Jiaqi Lin,
  • Meize Li,
  • Mengqi Jiang,
  • Linfei Ding,
  • Dongmei Sun,
  • Kai Huang,
  • Yawen Tang

DOI
https://doi.org/10.3390/nano12061015
Journal volume & issue
Vol. 12, no. 6
p. 1015

Abstract

Read online

Proper control of a 3d transition metal-based catalyst with advanced structures toward oxygen evolution reaction (OER) with a more feasible synthesis strategy is of great significance for sustainable energy-related devices. Herein, carbon nanotube interconnected NiCo layered double hydroxide rhombic dodecahedral nanocages (NiCo-LDH RDC@CNTs) were developed here with the assistance of a feasible zeolitic imidazolate framework (ZIF) self-sacrificing template strategy as a highly efficient OER electrocatalyst. Profited by the well-fined rhombic dodecahedral nanocage architecture, CNTs’ interconnected characteristic and structural feature of the vertically aligned nanosheets, the as-synthesized NiCo-LDH RDC@CNTs integrated large exposed active surface areas, enhanced electron transfer capacity and multidimensional mass diffusion channels, and thereby collaboratively afforded the remarkable electrocatalytic performance of the OER. Specifically, the designed NiCo-LDH RDC@CNTs exhibited a distinguished OER activity, which only required a low overpotential of 255 mV to reach a current density of 10 mA cm−2 for the OER. For the stability, no obvious current attenuation was detected, even after continuous operation for more than 27 h. We certainly believe that the current extraordinary OER activity combined with the robust stability of NiCo-LDH RDC@CNTs enables it to be a great candidate electrocatalyst for economical and sustainable energy-related devices.

Keywords