Ecotoxicology and Environmental Safety (Feb 2021)
Cognitive decline prevention in offspring of Pb+2 exposed mice by maternal aerobic training and Cur/CaCO3@Cur supplementations: In vitro and in vivo studies
Abstract
Heavy metals are considered contaminants that hazardously influence the healthy life of humans and animals as they are widely used in industry. Contact of youngsters and women at ages of parturition with lead (Pb+2) is a main related concern, which passes through the placental barricade and its better absorption in the intestine leads to flaws in the fetal developfment. However, the metals threaten animal and human life, in particular throughout developmental stages. Products existing in the nature have a major contribution to innovating chemo-preventives. As a naturally available polyphenol and necessary curcuminoid, curcumin (Cur) is a derivative of the herb Curcuma longa (L.) rhizome, which globally recognized as “wonder drug of life”; however, Cur has a limited clinical use as it is poorly dissolved in water. Therefore, to enhance its clinically relevant parameters, curcumin-loaded calcium carbonate (CaCO3@Cur) was synthesized by one step coprecipitation method as a newly introduced in this research. Initially, its structure was physio chemically characterized using FT-IR, FESEM and DLS equipment and then the cytotoxicity of lead when it was pretreated with Cur/CaCO3@Cur were assessed by MTT assay. Both Cur and CaCO3@Cur diminished the toxic effects of Pb+2 while the most protective effect on the Pb+2 cytotoxicity was achieved by pre-incubation of cells with CaCO3@Cur. Besides, the morphological changes of Pb+2-treated cells that were pre-incubated with or without Cur/CaCO3@Cur were observed by normal and florescent microscopes. A non-pharmacologic method that lowers the hazard of brain damage is exercise training that is capable of both improving and alleviating memory. In the current study, the role of regular aerobic training and CaCO3@Cur was assessed in reducing the risk of brain damage induced by lead nitrate contact. To achieve the mentioned goal, pregnant Balb/C mice were assigned to five groups (six mice/group) at random: negative and positive controls, aerobic training group and Cur and CaCO3@Cur treated (50 mg/kg/b.wt) trained groups that exposed to Pb+2 (2 mg/kg) by drinking water during breeding and pregnancy. With the completion of study, offspring were subjected to the behavioral tasks that was tested by step-through ORT, DLB, MWM and YM tests. As a result, having regular aerobic training and CaCO3@Cur co-administration with lead nitrate could reverse the most defected behavioral indicators; yet, this was not visible for both sexes and it seems that gender can also be a source of different effects in the animal's body. In fact, having regular aerobic training along with CaCO3@Cur supplementation during pregnancy may be encouraging protecting potential agents towards the toxicity of Pb+2 that could be recommended in the areas with high pollution of heavy metals.