Journal of Spectroscopy (Jan 2019)
Rapid Recognition of Geoherbalism and Authenticity of a Chinese Herb by Data Fusion of Near-Infrared Spectroscopy (NIR) and Mid-Infrared (MIR) Spectroscopy Combined with Chemometrics
Abstract
Fourier transform near-infrared (NIR) spectroscopy and mid-infrared (MIR) spectroscopy play important roles in all fingerprint techniques because of their unique characteristics such as reliability, versatility, precision, and ease of measurement. In this paper, a supervised pattern recognition method based on the PLSDA algorithm by NIR and the NIR-MIR fusion spectra has been established to identify geoherbalism of Angelica dahurica from different regions and authenticity of Corydalis yanhusuo W. T. Wang. Comparing principle component analysis (PCA) cannot successfully identify geographical origins of Angelica dahurica. Linear discriminant analysis (LDA) also hardly distinguishes those origins. Furthermore, the PLSDA model based on the data fusion of NIR and IR was more accurate and efficient. But, the identification of authenticity of Corydalis yanhusuo W. T. Wang was still inaccurate in the PLSDA model. Consequently, data fusion of NIR-MIR original spectra combined with moving window partial least-squares discriminant analysis was firstly used and showed perfect properties on authenticity and adulteration discrimination of Corydalis yanhusuo W. T. Wang. It indicated that data fusion of NIR-MIR spectra combined with MWPLSDA could be considered as the promising tool for rapid discrimination of the geoherbalism and authenticity of more Chinese herbs in the future.