This study investigates the impact of Ca and Sb elements on the corrosion resistance of E690 steel in a simulated marine environment. Electrochemical testing and dry/wet cyclic corrosion testing were conducted on prepared E690 steel specimens. The eroded specimens’ microstructure was observed under a scanning electron microscope, and the inclusion morphology was analyzed using an energy-dispersive spectrometer (EDS). The simulating liquid was designed to emulate the severe marine atmospheric environment in Xisha. Results showed that the addition of Ca and Sb elements effectively enhances the corrosion resistance of E690 steel in the simulated marine environment. The corrosion rates of E690 steel specimens with Ca and Sb additions were lower than those without, and the corrosion morphology was more uniform. These findings suggest that the addition of Ca and Sb elements can improve the corrosion resistance of E690 steel in simulated marine environments and have potential for use in marine engineering applications.