Engineering and Applied Science Letters (2020-06-01)

New perspectives on internet electricity use in 2030

  • Anders S.G. Andrae

Journal volume & issue
Vol. 3, no. 2
pp. 19 – 31


Read online

The main problems with several existing Information and Communication Technology (ICT) power footprint investigations are: too limited (geographical and temporal) system boundary, overestimation of power saving potential in the next decade, assume that historical power use can predict future global power use in the next decade despite unprecedented data traffic growth, assume that Moore´s law relation to digital circuitry can continue “forever” and that no problems with extra cooling power will occur for several decades. The highly variable outlooks for the future power consumptions depend on “starting values”, disruptions, regional differences and perceptual estimations of electricity intensity reductions and data traffic increase. A hugely optimistic scenario – which takes into account 20% annual improvement of the J/bit in data centers and networks until 2030 is presented. However, the electric power consumption of the present ICT scope will be significant unless great efforts are put into power saving features enabling such improvements of J/bit. Despite evident risks, it seems though that planned power saving measures and innovation will be able to keep the electricity consumption of ICT and the World under some kind of control. The major conclusion is based on several simulations in the present study – that future consumer ICT infrastructure cannot slow its overall electricity use until 2030 and it will use more than today. Data traffic may not be the best proxy metric for estimating computing electricity. Operations and J/operation seem more promising for forecasting and scaling of bottom-up models.