Frontiers in Plant Science (Aug 2014)

High atomic weight, high-energy radiation (HZE) induces transcriptional responses shared with conventional stresses in addition to a core DSB response specific to clastogenic treatments.

  • Victor eMissirian,
  • Phillip A Conklin,
  • Kevin M Culligan,
  • Neil D Huefner,
  • Anne Bagg Britt

DOI
https://doi.org/10.3389/fpls.2014.00364
Journal volume & issue
Vol. 5

Abstract

Read online

Plants exhibit a robust transcriptional response to gamma radiation which includes the induction of transcripts required for homologous recombination and the suppression of transcripts that promote cell cycle progression. Various DNA damaging agents induce different spectra of DNA damage as well as collateral damage to other cellular components and therefore are not expected to provoke identical responses by the cell. Here we study the effects of two different types of ionizing radiation (IR) treatment, HZE (1 GeV Fe26+ high mass, high charge, and high energy relativistic particles) and gamma photons, on the transcriptome of Arabidopsis thaliana seedlings. Both types of IR induce small clusters of radicals that can result in the formation of double strand breaks (DSBs), but HZE also produces linear arrays of extremely clustered damage. We performed these experiments across a range of time points (1.5 to 24 hours after irradiation) in both wild-type plants and in mutants defective in the DSB-sensing protein kinase ATM. The two types of IR exhibit a shared double strand break-repair-related damage response, although they differ slightly in the timing, degree, and ATM-dependence of the response. The ATM-dependent, DNA metabolism-related transcripts of the DSB response were also induced by other DNA damaging agents, but were not induced by conventional stresses. Both Gamma and HZE irradiation induced, at 24 hours post-irradiation, ATM-dependent transcripts associated with a variety of conventional stresses; these were overrepresented for pathogen response, rather than DNA metabolism. In contrast, only HZE-irradiated plants, at 1.5 hr after irradiation, exhibited an additional and very extensive transcriptional response, shared with plants experiencing extended night. This response was not apparent in gamma-irradiated plants.

Keywords