Scientific Reports (May 2023)

Behavioral and cellular responses to circadian disruption and prenatal immune activation in mice

  • Tara C. Delorme,
  • William Ozell-Landry,
  • Nicolas Cermakian,
  • Lalit K. Srivastava

DOI
https://doi.org/10.1038/s41598-023-34363-w
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Most individuals with neurodevelopmental disorders (NDDs), including schizophrenia and autism spectrum disorders, experience disruptions in sleep and circadian rhythms. Epidemiological studies indicate that exposure to prenatal infection increases the risk of developing NDDs. We studied how environmental circadian disruption contributes to NDDs using maternal immune activation (MIA) in mice, which models prenatal infection. Pregnant dams were injected with viral mimetic poly IC (or saline) at E9.5. Adult poly IC- and saline-exposed offspring were subjected to 4 weeks of each of the following: standard lighting (LD1), constant light (LL) and standard lighting again (LD2). Behavioral tests were conducted in the last 12 days of each condition. Poly IC exposure led to significant behavioral differences, including reduced sociability (males only) and deficits in prepulse inhibition. Interestingly, poly IC exposure led to reduced sociability specifically when males were tested after LL exposure. Mice were exposed again to either LD or LL for 4 weeks and microglia were characterized. Notably, poly IC exposure led to increased microglial morphology index and density in dentate gyrus, an effect attenuated by LL exposure. Our findings highlight interactions between circadian disruption and prenatal infection, which has implications in informing the development of circadian-based therapies for individuals with NDDs.