BioMedical Engineering OnLine (Jan 2018)
Video pulse rate variability analysis in stationary and motion conditions
Abstract
Abstract Background In the last few years, some studies have measured heart rate (HR) or heart rate variability (HRV) parameters using a video camera. This technique focuses on the measurement of the small changes in skin colour caused by blood perfusion. To date, most of these works have obtained HRV parameters in stationary conditions, and there are practically no studies that obtain these parameters in motion scenarios and by conducting an in-depth statistical analysis. Methods In this study, a video pulse rate variability (PRV) analysis is conducted by measuring the pulse-to-pulse (PP) intervals in stationary and motion conditions. Firstly, given the importance of the sampling rate in a PRV analysis and the low frame rate of commercial cameras, we carried out an analysis of two models to evaluate their performance in the measurements. We propose a selective tracking method using the Viola–Jones and KLT algorithms, with the aim of carrying out a robust video PRV analysis in stationary and motion conditions. Data and results of the proposed method are contrasted with those reported in the state of the art. Results The webcam achieved better results in the performance analysis of video cameras. In stationary conditions, high correlation values were obtained in PRV parameters with results above 0.9. The PP time series achieved an RMSE (mean ± standard deviation) of 19.45 ± 5.52 ms (1.70 ± 0.75 bpm). In the motion analysis, most of the PRV parameters also achieved good correlation results, but with lower values as regards stationary conditions. The PP time series presented an RMSE of 21.56 ± 6.41 ms (1.79 ± 0.63 bpm). Conclusions The statistical analysis showed good agreement between the reference system and the proposed method. In stationary conditions, the results of PRV parameters were improved by our method in comparison with data reported in related works. An overall comparative analysis of PRV parameters in motion conditions was more limited due to the lack of studies or studies containing insufficient data analysis. Based on the results, the proposed method could provide a low-cost, contactless and reliable alternative for measuring HR or PRV parameters in non-clinical environments.
Keywords