Open Engineering (Apr 2020)

Optimisation of stress distribution in a highly loaded radial-axial gas microturbine using FEM

  • Zych Paweł,
  • Żywica Grzegorz

DOI
https://doi.org/10.1515/eng-2020-0036
Journal volume & issue
Vol. 10, no. 1
pp. 318 – 335

Abstract

Read online

The article discusses the stress optimisation process of the highly loaded disc of a high-speed radial-axial microturbine. At the design stage, the strength optimisation is vitally important for these types of devices because they must withstand very high temperatures (600∘C in this case) and be capable of operating at high rotational speeds (96,000 rpm in this case). Calculations were made using a three dimensional FE numerical model. The optimisation process is strictly connected with the choice of materials — which in this case are Inconel 738 (nickel-cobalt super alloy) and silicon nitride. Several stress reduction methods were developed, which took into account the mass of the disc, the rotational speed of the rotor and the complex shape of the rear part of the disc. Numerical computations helped to choose the best optimisation method, which decreased maximum reduced von Mises stresses by about 45% (from 1,288 MPa to 705 MPa). The methods proposed in this article are universal and can be implemented in the design process of various high-speed radial-axial microturbines. This article could be of interest to scientists and engineers who deal with highly loaded microturbines, which are increasingly used in many industrial sectors.

Keywords