Journal of Mechanics of Continua and Mathematical Sciences (Jan 2024)
A NOVEL HYBRID HARMONY SEARCH (HS) WITH WAR STRATEGY OPTIMIZATION (WSO) FOR SOLVING OPTIMIZATION PROBLEMS
Abstract
The usage of nature-inspired meta-heuristic algorithms is increasing due to their simplicity and versatility. These algorithms are widely used in numerous domains, especially in scientific fields such as operations research, computer science, artificial intelligence, and mathematics. Based on the core principles of exploration and exploitation, they provide flexible problem-solving abilities. This study presents a novel method to improve the effectiveness of the War Strategy Optimization (WSO) algorithm for optimization issues. The suggested approach combines the WSO technique with the Harmony Search (HS) algorithm, resulting in a hybrid algorithm called H-WSO. The aim is to enhance the overall optimization performance by leveraging the capabilities of both algorithms through the integration of swarm intelligence approaches. In order to assess the effectiveness of the recently suggested H-WSO algorithm, a set of experiments was carried out on 50 benchmark test functions. These functions included both unimodal and multimodal functions and spanned across different dimensions. The findings from these studies clearly showed a notable enhancement in the efficiency of the H-WSO algorithm when compared to the original WSO algorithm. Various metrics were utilized to evaluate the effectiveness of the proposed algorithm, including the optimal fitness function value (Mean), Standard Deviation (St.d), and Median. The H-WSO algorithm regularly shows higher efficiency than the WSO algorithm, making it a promising and practical approach for addressing complicated optimization challenges
Keywords