Cancer stem cells (CSCs) have high tumorigenic capacity. Here, we show that stem-like traits of specific human cancer cells are reduced by overexpression of the histone deacetylase sirtuin 6 (SIRT6). SIRT6-sensitive cancer cells bear mutations that activate phosphatidylinositol-3-kinase (PI3K) signaling, and overexpression of SIRT6 reduces growth, progression, and grade of breast cancer in a mouse model with PI3K activation. Tumor metabolomic and transcriptomic analyses reveal that SIRT6 overexpression dampens PI3K signaling and stem-like characteristics and causes metabolic rearrangements in this cancer model. Ablation of a PI3K activating mutation in otherwise isogenic cancer cells is sufficient to convert SIRT6-sensitive into SIRT6-insensitive cells. SIRT6 overexpression suppresses PI3K signaling at the transcriptional level and antagonizes tumor sphere formation independent of its histone deacetylase activity. Our data identify SIRT6 as a putative molecular target that hinders stemness of tumors with PI3K activation.