BMC Plant Biology (Sep 2010)

DNA barcoding of the <it>Lemnaceae</it>, a family of aquatic monocots

  • Wang Wenqin,
  • Wu Yongrui,
  • Yan Yiheng,
  • Ermakova Marina,
  • Kerstetter Randall,
  • Messing Joachim

DOI
https://doi.org/10.1186/1471-2229-10-205
Journal volume & issue
Vol. 10, no. 1
p. 205

Abstract

Read online

Abstract Background Members of the aquatic monocot family Lemnaceae (commonly called duckweeds) represent the smallest and fastest growing flowering plants. Their highly reduced morphology and infrequent flowering result in a dearth of characters for distinguishing between the nearly 38 species that exhibit these tiny, closely-related and often morphologically similar features within the same family of plants. Results We developed a simple and rapid DNA-based molecular identification system for the Lemnaceae based on sequence polymorphisms. We compared the barcoding potential of the seven plastid-markers proposed by the CBOL (Consortium for the Barcode of Life) plant-working group to discriminate species within the land plants in 97 accessions representing 31 species from the family of Lemnaceae. A Lemnaceae-specific set of PCR and sequencing primers were designed for four plastid coding genes (rpoB, rpoC1, rbcL and matK) and three noncoding spacers (atpF-atpH, psbK-psbI and trnH-psbA) based on the Lemna minor chloroplast genome sequence. We assessed the ease of amplification and sequencing for these markers, examined the extent of the barcoding gap between intra- and inter-specific variation by pairwise distances, evaluated successful identifications based on direct sequence comparison of the "best close match" and the construction of a phylogenetic tree. Conclusions Based on its reliable amplification, straightforward sequence alignment, and rates of DNA variation between species and within species, we propose that the atpF-atpH noncoding spacer could serve as a universal DNA barcoding marker for species-level identification of duckweeds.