Journal of Nanotechnology (Jan 2023)

Photo-Oxidation of Organic Dye by Fe2O3 Nanoparticles: Catalyst, Electron Acceptor, and Polyurethane Membrane (PU-Fe2O3) Effects

  • Bachir Yaou Balarabe,
  • Maman Nasser Illiassou Oumarou,
  • Abdoul Salam Koroney,
  • Irédon Adjama,
  • Abdoul Razak Ibrahim Baraze

DOI
https://doi.org/10.1155/2023/1292762
Journal volume & issue
Vol. 2023

Abstract

Read online

The textile industry’s discharges have long been regarded as severe water pollution. The photocatalytic degradation of dyes using semiconductors is one of the crucial methods. The present study efficiently used the mechanical method to synthesize Iron oxide Nanoparticles. XRD, FT-IR, UV-Vis DRS, and Raman analyses were performed to analyze the structural and optical. From the data provided by XRD and Raman data, we believed that the as-synthesized Iron oxide was pure hematite (α-Fe2O3) with a hexagonal structure. Additionally, the EDS results show that the synthesized material is pure. By adjusting specific parameters, including the dye concentration, the catalyst dosage, the pH, and the oxidizing agent such as H2O2 and K2S2O8, the degradation of eosin yellowish using Fe2O3 as a photocatalyst has been discussed. Additionally, the kinetics of eosin yellowish degradation has been studied. A study was also conducted using Fe2O3 nanoparticles attached to polyurethane polymer (PU) to investigate its photocatalytic activity on methylene blue, methyl orange, and indigo carmine. In 30 minutes, nearly 90% of the dyes had degraded. The total organic carbon (TOC) analysis confirmed this result.