Transactions of the Association for Computational Linguistics (Nov 2019)

Enabling Robust Grammatical Error Correction in New Domains: Data Sets, Metrics, and Analyses

  • Napoles, Courtney,
  • Nădejde, Maria,
  • Tetreault, Joel

DOI
https://doi.org/10.1162/tacl_a_00282
Journal volume & issue
Vol. 7
pp. 551 – 566

Abstract

Read online

Until now, grammatical error correction (GEC) has been primarily evaluated on text written by non-native English speakers, with a focus on student essays. This paper enables GEC development on text written by native speakers by providing a new data set and metric. We present a multiple-reference test corpus for GEC that includes 4,000 sentences in two new domains ( formal and informal writing by native English speakers) and 2,000 sentences from a diverse set of non-native student writing. We also collect human judgments of several GEC systems on this new test set and perform a meta-evaluation, assessing how reliable automatic metrics are across these domains. We find that commonly used GEC metrics have inconsistent performance across domains, and therefore we propose a new ensemble metric that is robust on all three domains of text.