Scientific Reports (Jul 2024)

Microwave-assisted synthesis of ZnS@CuInxSy for photocatalytic degradation of coloured and non-coloured pollutants

  • Ashmalina Rahman,
  • Fazlurrahman Khan,
  • James Robert Jennings,
  • Young-Mog Kim,
  • Mohammad Mansoob Khan

DOI
https://doi.org/10.1038/s41598-024-66100-2
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Copper indium sulfide (CuInS2) exhibits strong visible light absorption and thus has the potential for good photocatalytic activity; however, rapid charge recombination limits its practical usage. An intriguing strategy to overcome this issue is to couple CuInS2 with another semiconductor to form a heterojunction, which can improve the charge carrier separation and, hence, enhance the photocatalytic activity. In this study, photocatalysts comprising CuInS2 with a secondary CuS phase (termed CuInxSy) and CuInxSy loaded with ZnS (termed ZnS@CuInxSy) were synthesized via a microwave-assisted method. Structural and morphological characterization revealed that the ZnS@CuInxSy photocatalyst comprised tetragonal CuInS2 containing a secondary phase of hexagonal CuS, coupled with hexagonal ZnS. The effective band gap energy of CuInxSy was widened from 2.23 to 2.71 as the ZnS loading increased from 0 to 30%. The coupling of CuInxSy with ZnS leads to long-lived charge carriers and efficient visible-light harvesting properties, which in turn lead to a remarkably high activity for the photocatalytic degradation of brilliant green (95.6% in 5 h) and conversion of 4-nitrophenol to 4-nitrophenolate ions (95.4% in 5 h). The active species involved in these photocatalytic processes were evaluated using suitable trapping agents. Based on the obtained results, photocatalytic mechanisms are proposed that emphasize the importance of h+, O2 •–, and OH− in photocatalytic processes using ZnS@CuInxSy.

Keywords