Journal of Cybersecurity and Privacy (Jul 2023)
Power-Based Side-Channel Attacks on Program Control Flow with Machine Learning Models
Abstract
The control flow of a program represents valuable and sensitive information; in embedded systems, this information can take on even greater value as the resources, control flow, and execution of the system have more constraints and functional implications than modern desktop environments. Early works have demonstrated the possibility of recovering such control flow through power-based side-channel attacks in tightly constrained environments; however, they relied on meaningful differences in computational states or data dependency to distinguish between states in a state machine. This work applies more advanced machine learning techniques to state machines which perform identical operations in all branches of control flow. Complete control flow is recovered with 99% accuracy even in situations where 97% of work is outside of the control flow structures. This work demonstrates the efficacy of these approaches for recovering control flow information; continues developing available knowledge about power-based attacks on program control flow; and examines the applicability of multiple standard machine learning models to the problem of classification over power-based side-channel information.
Keywords