PLoS ONE (Jan 2008)

Nucleoside analogue reverse transcriptase inhibitors differentially inhibit human LINE-1 retrotransposition.

  • R Brad Jones,
  • Keith E Garrison,
  • Jessica C Wong,
  • Erick H Duan,
  • Douglas F Nixon,
  • Mario A Ostrowski

DOI
https://doi.org/10.1371/journal.pone.0001547
Journal volume & issue
Vol. 3, no. 2
p. e1547

Abstract

Read online

BACKGROUND: Intact LINE-1 elements are the only retrotransposons encoded by the human genome known to be capable of autonomous replication. Numerous cases of genetic disease have been traced to gene disruptions caused by LINE-1 retrotransposition events in germ-line cells. In addition, genomic instability resulting from LINE-1 retrotransposition in somatic cells has been proposed as a contributing factor to oncogenesis and to cancer progression. LINE-1 element activity may also play a role in normal physiology. METHODS AND PRINCIPAL FINDINGS: Using an in vitro LINE-1 retrotransposition reporter assay, we evaluated the abilities of several antiretroviral compounds to inhibit LINE-1 retrotransposition. The nucleoside analogue reverse transcriptase inhibitors (nRTIs): stavudine, zidovudine, tenofovir disoproxil fumarate, and lamivudine all inhibited LINE-1 retrotransposition with varying degrees of potencies, while the non-nucleoside HIV-1 reverse transcriptase inhibitor nevirapine showed no effect. CONCLUSIONS/SIGNIFICANCE: Our data demonstrates the ability for nRTIs to suppress LINE-1 retrotransposition. This is immediately applicable to studies aimed at examining potential roles for LINE-1 retrotransposition in physiological processes. In addition, our data raises novel safety considerations for nRTIs based on their potential to disrupt physiological processes involving LINE-1 retrotransposition.