PLoS ONE (Jan 2024)

Effect of photobiomodulation on lower urinary tract dysfunction in rat cystitis model.

  • Naoya Ishibashi,
  • Tomoyuki Uchiyama,
  • Shinichi Tao

DOI
https://doi.org/10.1371/journal.pone.0306527
Journal volume & issue
Vol. 19, no. 7
p. e0306527

Abstract

Read online

ObjectivePhotobiomodulation selectively controls the activity of the sensory nervous system associated with A-delta and C fibers. Hypersensitivity involving the afferent A-delta and C fibers occurs in cystitis and decreases urinary function. This study aimed to investigate the effect of photobiomodulation on urinary storage dysfunction and voiding functions in cystitis model rats.MethodsWe prepared the rat cystitis model. Under anesthesia, a cannula was connected to the bladder via a ventral incision. 0.3% acetic acid or saline was injected into the bladder. Continuous cystometry was performed, measuring bladder pressure and voiding urine volume with rats freely mobile. Laser irradiation was applied to the L6 lumbosacral intervertebral foramen using an 830 nm laser. Residual urine was extracted post-cystometry.ResultsIn the rat cystitis model groups, there was a significant decrease in the voiding interval and volume compared to the group receiving normal saline infusion. After sham or laser irradiation, only the group with laser irradiation showed a significant increase in voiding interval (217%, p = 0.0002) and voiding volume (192%, p = 0.0012) in the parameters of storage dysfunction. The basal pressure, intravesical pressure, and residual urine volume remained unchanged in all groups before and after irradiation.ConclusionsThis study indicates that photobiomodulation may improve urine storage dysfunction without exacerbating voiding function in a rat model of cystitis. Thus, photobiomodulation may be a new treatment option for the hypersensitivity and detrusor overactivity caused by cystitis.