Scientific Reports (Jun 2021)
Sustainability, productivity, profitability and soil health with conservation agriculture based sustainable intensification of oilseed brassica production system
Abstract
Abstract Conservation agriculture (CA) practices are getting space world-wide to answer many emerging challenges like; declining factor productivity, deteriorating soil health, water scarcity, climate change, and farm profitability and sustainability. Oilseed brassica (Indian mustard, Brassica juncea L.), a winter oilseed grown under rainfed agro-ecosystem is vulnerable to low yields, high production cost, degrading soil and water quality, and climatic vagaries. The present study was undertaken on CA-based sustainable intensification of Indian mustard for enhancing inputs efficiencies, farm profitability and sustainability. Permanent beds with residue retention (PB + R) improved mustard equivalent yield (11.4%) and system grain yield (10.6%) compared with conventional tillage without residue (CT − R). Maize–mustard rotation (Mz–M) increased system grain yield (142.9%) as well as mustard equivalent yield (60.7%) compared with fallow-mustard (F-M). Mz–M system under PB + R increased sustainable yield index (376.5%), production efficiency (177.2%), economic efficiency (94%) and irrigation water productivity (66%) compared with F-M under CT − R. PB + R increased soil organic carbon (SOC) stock at 0–15 cm (17.7%) and 15–30 cm (29.5%) soil depth compared with CT − R. Addition of green gram in rotation with mustard improved SOC at 0–15 cm (27.4%) and 15–30 cm (20.5%) compared with F-M system. CA-based cluster bean-mustard/GG-M system increased N productivity, whereas, P and K productivity improved with Mz–M system compared with F-M under CT − R. Thus, CA-based Mz–M system should be out-scaled in the traditional rainfed fallow-mustard system to improve the farm production and income on holistic basis to make the country self-sufficient in edible oils.