Remote Sensing (Jul 2022)

Mapping Dominant Tree Species of German Forests

  • Torsten Welle,
  • Lukas Aschenbrenner,
  • Kevin Kuonath,
  • Stefan Kirmaier,
  • Jonas Franke

DOI
https://doi.org/10.3390/rs14143330
Journal volume & issue
Vol. 14, no. 14
p. 3330

Abstract

Read online

The knowledge of tree species distribution at a national scale provides benefits for forest management practices and decision making for site-adapted tree species selection. An accurate assignment of tree species in relation to their location allows conclusions about potential resilience or vulnerability to biotic and abiotic factors. Identifying areas at risk helps the long-term strategy of forest conversion towards a natural, diverse, and climate-resilient forest. In the framework of the national forest inventory (NFI) in Germany, data on forest tree species are collected in sample plots, but there is a lack of a full coverage map of the tree species distribution. The NFI data were used to train and test a machine-learning approach that classifies a dense Sentinel-2 time series with the result of a dominant tree species map of German forests with seven main tree species classes. The test of the model’s accuracy for the forest type classification showed a weighted average F1-score for deciduous tree species (Beech, Oak, Larch, and Other Broadleaf) between 0.77 and 0.91 and for non-deciduous tree species (Spruce, Pine, and Douglas fir) between 0.85 and 0.94. Two additional plausibility checks with independent forest stand inventories and statistics from the NFI show conclusive agreement. The results are provided to the public via a web-based interactive map, in order to initiate a broad discussion about the potential and limitations of satellite-supported forest management.

Keywords