Nauka ta progres transportu (Oct 2020)

IMPROVEMENT OF THE METHODOLOGY FOR RATIONAL PARAMETERS DETERMINATION OF THE CAPACITIVE ENERGY STORAGE FOR THE METRO TRAIN

  • A. O. Sulym,
  • P. O. Khozia

DOI
https://doi.org/10.15802/stp2020/218603
Journal volume & issue
no. 5(89)
pp. 45 – 67

Abstract

Read online

Purpose. The purpose of the work is to determine the rational capacity and energy consumption of the onboard capacitive energy storages using a complex approach for estimating the parameters, which is based on the methods of theoretical research. Methodology. The article performs a comparative analysis of existing methodologies and approaches for determination of the onboard capacitive storages parameters for subway trains with recovery systems, formulates the advantages and disadvantages of each of them. It is determined that among the existing methodologies it is most reasonable to use a complex approach, the aim of which is to determine the rational capacity and energy consumption according to two parameters of the energy storage system – weight and payback period. A procedure for determining the rational parameters of the onboard capacitive energy storage using theoretical research methods is proposed: theoretical basis of electric traction, mathematical modeling of dynamic motion and energy processes, mathematical statistics, technical-economic and comparative analysis. Findings. According to the results of the complex theoretical researches, the economic expediency of implementation of onboard capacitive energy storages on the subway train is confirmed. The energy storage system with rational parameters of the onboard capacitive energy storage for established operating conditions in the Municipal Enterprise «Kyiv Metro» and selected experimental train of the subway is determined. The amount of saved electricity due to the implementation of the energy storage system with rational parameters is estimated. Originality. The methodology for determining the rational parameters of the onboard capacitive energy storage in terms of replacing the use of experimental research data with theoretical research, the purpose of which is to model the movement of subway trains with recovery systems using software to reduce financial costs, research time and increase their accuracy. The research on determination of quantitative indicators of recovery electricity for the analysis of energy saving reserves was further developed in the subway. Practical value. The results of theoretical research can be the basis for the creation of full-scale samples of subway trains with onboard capacitive energy storages. The researches will create recommendations for the design of innovative energy-saving subway trains with improved technical and economic characteristics that can increase the efficiency of the transportation process in the subway.

Keywords